Remote Sensing Another Point of View

Peter McClintock Ph.D., Applied Analysis

June 26, 2007
California I/M Review Committee
Meeting

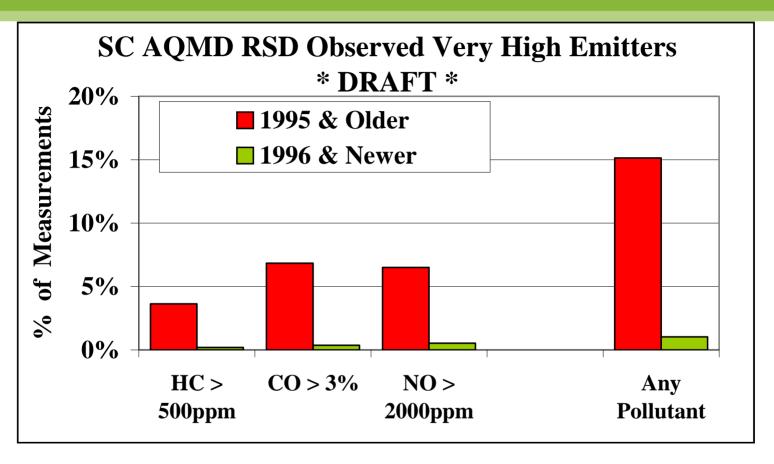
Presentation Outline

Benefits of identifying on-road high emitters

> Fleet Coverage

> RSD program operating costs

Looking forward


- ➤ Does Smog Check leave any high emitters on-road?
- > Does RSD identify high emitters?
- ➤ What happens to identified high emitters?
- > What's in the VID?
- ➤ How should benefits be calculated?

Does Smog Check leave any on-road high emitters: YES

- ➤ ARB 2004 Evaluation of Smog Check:

 "40.4 percent of the repaired vehicles tested failed the subsequent roadside test."
- ➤ October 2006 IMRC Presentation, Phil Heirigs (draft): 40% of repaired vehicles fail roadside ASM soon after Smog Check; 18% of passing vehicles fail roadside ASM soon after Smog Check;

More failing vehicles on road after Smog Check than fail Smog Check

Feb-May 2007:

- > 15% of 1995 & Older
- ➤ 1% of 1996 & Newer

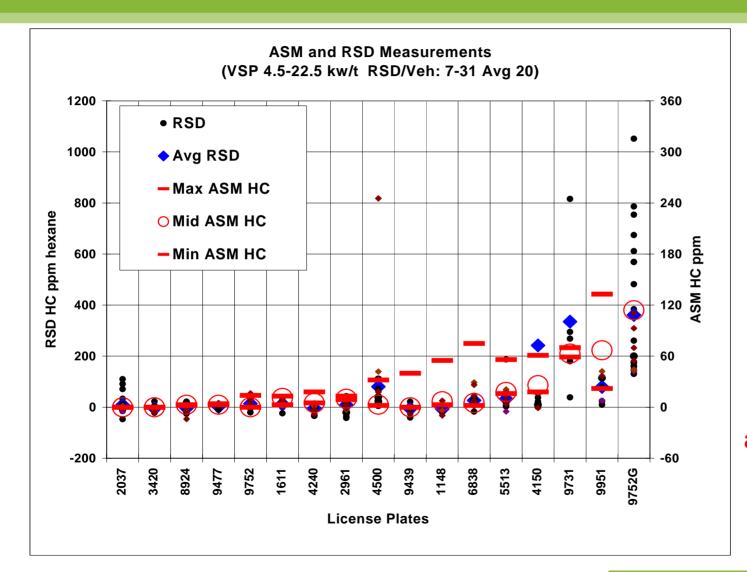
Can RSD identify on-road high emitters? YES

Studies with Confirmatory Roadside Pull Over Tests 1989 Lynwood:

86% of vehicles with RSD >2% CO failed roadside inspection

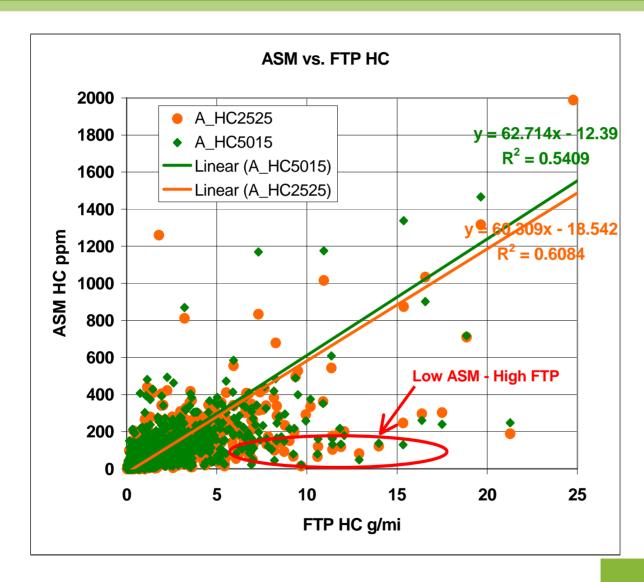
1996 Orange County SCAQMD/DRI:

95% of vehicles with RSD >4% CO or 1,000 ppm HC failed IM240


2001 BAR:

83-88% of vehicles with RSD >2% CO or 1000ppm HC or 1,500 ppm NOx failed roadside ASM

92% w/ 2 observations with RSD >2% CO or 1000ppm HC or 1,500 ppm NOx failed ASM


2004 ARB/BAR:

"For some vehicles, RSD cutpoints can **perfectly predict ASM failure** (i.e. approximately the **highest 3%** of RSD readings). ERG, 2006 CRC

~20 RSD passes at different modes
3 ASM tests

Don't expect
100% at ASM
Cutpoints but
good
agreement for
dirtiest
vehicles

ARB/BAR FTP-ASM
Dataset ~ 2,000
Vehicles (some offchart)

ASM is not a perfect test.

Some high emitters have low HC on ASM

RSD identified high emitter behavior is similar to ASM identified high emitter behavior

	Smog Test Fail % fo		
Smog Test At:	5% Identified by RSD	Identified by ASM	Source
Pull-over	85-100%	100%	1
Voluntary Referee	?	85%	2
Smog Check Station	44%	42%	3,4

Sources:

- 1. RSD rate from various pull-over studies cited in earlier slide
- 2. ASM rate from ERG Remote Sensing draft Table 9-5
- 3. ERG Remote Sensing draft, Executive Summary, page 1-6.
- 4. ERG Remote Sensing draft Table 9-6

2,3,4 ERG, Evaluation of Remote Sensing for Improving California's Smog Check Program Version 11 May 4, 2007

Virginia Sample Courtesy of Rich Olin, VA DEQ	Vehicles	Known Outcome %	% With Emissions Reduction		
Notices due to be completed	122				
- No referral test:					
- Sell or scrap	21	21%	21%		
 Not subject to program 	2	2 %			
- Mis-register (GVWR, location)	?				
- Referral test:					
- Pre-inspection repair, or	38	38%	32% ?	*	
 Not an ASM high emitter 	30	30 /0			
- Fail and repair/scrap	40	40%	40%		
- Referral test fail %	51%				
Subtotal outcomes known	101		92%		
Return to sender	8		TBD		
Fine paid or action pending	13		TBD		
* Assumes 85% correct fail rate (phone survey in progress)					

High emitter program referral options

- Some on-road high emitters already beat Smog Check!
- Make sure a thorough inspection results in proper repairs:
 - Diagnose vehicles even if pass ASM
 - Visual and evaporative inspections
 - Documented repairs
 - VAVR and VRV options
 - Monitor results and follow-up

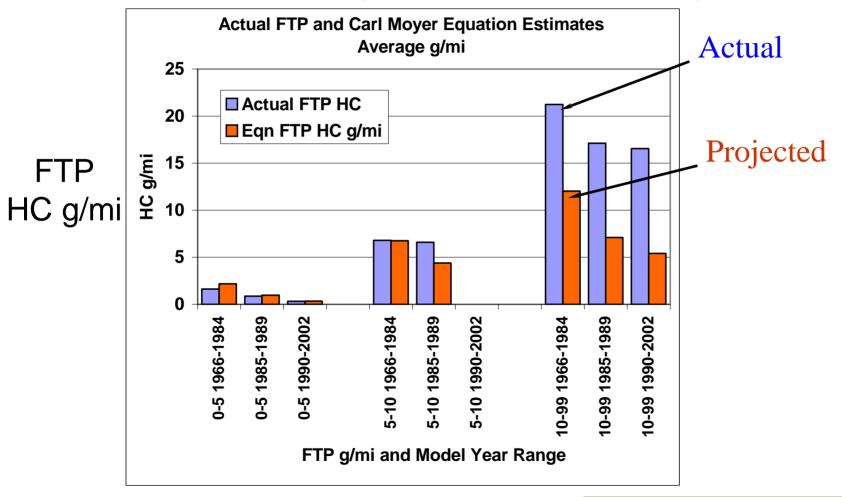
What's in the VID and what's not?

Missing data, good data and misinformation

- Missing pre-inspection repairs
- Missing results for sold or scrapped
- Clean vehicle cold starts
- Excessive pre-conditioning, aborts
- Vehicles tuned to ASM
- Improper testing
- How to gauge the extent of problems:
 - Use Random Roadside ASM and RSD
 - Examine regional and local differences

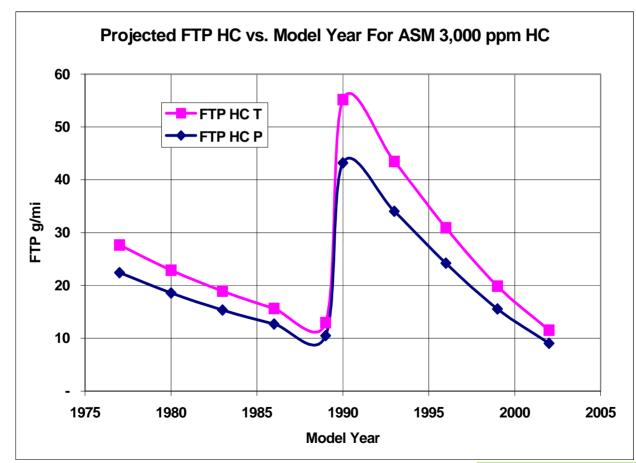
How to calculate benefit	ts?	nef	ben	late	cu	cal	to	low	ı
--------------------------	-----	-----	-----	------	----	-----	----	-----	---

		?*
>	Sell or scrap: Carl Moyer VAVR Missing from VID	+100%
>	Referral test and after repair: Use appropriate ASM-FTP Use appropriate VMT	+50% +10%
	Use appropriate vivi	Ŧ10 /0
	Pre-inspection repairs:Missing from VID	+80%
>	 Use realistic repair benefit life Consider Smog Check effectiveness on these vehicles 	+50%
	Include high emitters < 6yrs old	+15%


+15%

Include smokers, PM

[▶] Benefits are substantial, guess 3-10X estimated


^{*?} WAG Increases over draft report – some are multipliers

➤ ASM-FTP: Existing equations underestimate highest emitters

ASM – FTP: Existing equations MY discontinuity for HC Projected FTP Emissions of 1975-2003 models with ASM 3,000 ppm HC

FTP HC g/mi

Behavioral benefits for Smog Check:

- Deter tampering or replacement of parts for I/M test
- Deter improper inspections
- Deter non-compliance
- Encourage prompt maintenance
- Encourage complete repairs
- Encourage correct registration (~3.5% unregistered¹)

1 Younglove T, et al, "Unregistration Rates for On-road Vehicles in California", Journal of Transportation and Statistics V7, 2004

Estimate benefits using combination of:

- VID data
- Random roadside
- RSD observations
- Special Surveys
- Track changes over time

Presentation Outline

Benefits of identifying on-road high emitters

> Fleet Coverage

> RSD program operating costs

Looking forward

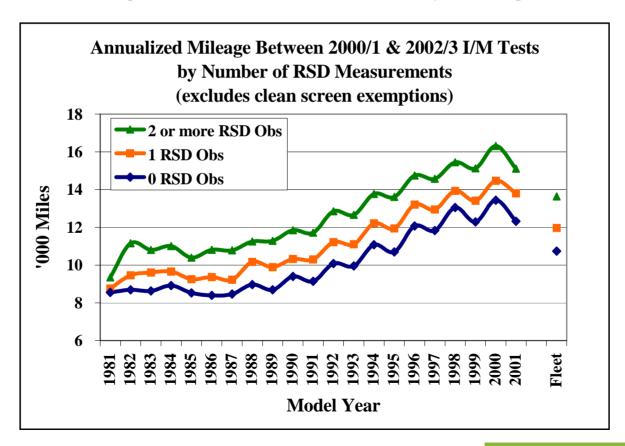
- ➤ 2002 St. Louis ~1.3M Vehicles, 4-5 RSD Vans Gateway Clean Air Program:
 - Two years exempt
 - Design goal 25% RSD clean screen to reduce overall fee
 - RSD vans <u>reduced</u> as operational efficiency improved
 - % of I/M vehicles measured 51%
 - Est'd % of I/M vehicle VMT 56 %
 - % of vehicles w six years exempt 46%
 - Est'd % of I/M vehicle VMT 51%
- > Draft Report Table 1-1:% of Statewide I/M Fleet 17%?!

Assumed only 40% of vehicles in reasonable power range Different divisor than the assumed RSD monitoring area

Operating Mode / Vehicle Specific Power (VSP)

Draft Report % of Vehicles in Reasonable Power Range:

- Page 9-19 In this study, we found that about 40% of the any-VSP RSD readings were taken when VSPs were in the moderate load range of 5 to 20 kW/Mg 40%
- Appendix B In this study, we chose to use RSD measurements that have a VSP range of 5 to 25 kW/Mg. For all sites in Sacramento, about 44% of the vehicles drove past RSD sites in this VSP range.
- Table 6-2 + Valid RSD measurements 1,456,27 + Moderate engine load (5 < VSP < 25 kW/Mg) 843,867</p>
 58%?


ESP Programs:

- Virginia 2005 (3 < VSP < 22 kW/t)</p>
- **Missouri 2002** (5 < VSP < 25 kW/t)
 - Measurements
 82%
 - <u>Vehicles</u> (majority w multiple measurements) 93%

- In-state License Plate to DMV Match Rates:
 - ➤ Normally in the 90-98% range
- Sites in Southern California
 - Metered ramps work well best when the meter is on

- VMT is more important than Vehicles
- Vehicles measured by RSD have higher VMT
- RSD high emitter VMT TBD may be higher

- Cost Effective Measurement of of Over 50% of Vehicles Has Been Achieved Without Difficulty
- Higher %'s Are Certainly Possible
- Ultimate % Limits Have Yet to be Tested

Presentation Outline

➤ Benefits of identifying on-road high emitters

> Fleet Coverage

> RSD program operating costs

Looking forward

RSD Operating Costs per Vehicle

 Measure unique vehicles SC AQMD 10% coverage Virginia VSP qualified, 10% coverage Texas 20% coverage Missouri 50% coverage 	\$1.25 \$1.08 \$1.60 ~\$2.50	\$1.08 - \$2.50
•Draft report Table 1-3 cost / Table 1-1 VSP qualified		\$10.82 - \$17.47 7-10X?
 Clean Screen Missouri 50% coverage w admin 2 yr exempt 		\$10 - \$15
 Draft report Table 1-3 large program 6 yr exempt 		\$145
o yr Gaerript		10X?

RSD Operating Costs per Vehicle

➤ Voluntary	High	Emitter	VAVR
-------------	------	----------------	------

>SC AQMD Dirtiest 3%@ 10% coverage \$320

•20% recruitment

•\$220 - RSD identification (\$1.25/3% fail /20%)

•\$100 - Recruitment, testing, processing

Draft report Table 1-3 cost / Table 1-4 Vehicles \$894 - \$4,610

•\$16M funding

3 - 15X?

➤ Mandatory High Emitter Call-in ~\$155

➤ Smog Check Average High Emitter \$337

•2005: \$49 fee / 14.5% fail rate

RSD Operating Costs per Ton

➤ AQMD High Emitter VAVR/VRV:

- >AQMD estimate:
- •VAVR **\$8,000-\$14,000** per ton (HC + NOx)
- •VRV **\$12,000** per ton (HC+NOx)
- ➤ ESP combined estimate \$6,000 \$12,000

≻ValleyCAN Tune-In and Tune-Up

- •Doug Lawson **\$8,700-\$14,900** per ton
- Not including evaporative reduction benefits

➤ Mandatory High Emitter estimate <\$5,000 per ton

- More efficient 'recruitment'
- •'Free' sale or scrap

Presentation Outline

Benefits of identifying on-road high emitters

Fleet Coverage

> RSD program operating costs

Looking forward

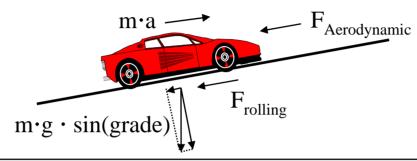
- RSD improvements:
 - Unattended units
 - Two-lane operation with proximity detection
 - Special opportunities
- Lower operating costs
- More productive locations

- San Francisco Bay Area:
 - > 4.5M Vehicles
 - Seven toll bridges
 - > 800,000 vehicles per day
 - > Approx. 60 toll plaza lanes
 - Special lanes for HD trucks & buses

San Francisco Bay Area: Bay Bridge

270,000 vehicles / day Crying out for a pilot program!

- Perfect set-up for RSD High Emitter:
 - 'Stop and go' or 'slow and go' traffic
 - Space behind toll booths
 - Lighting and power for 24x7 operation
 - Existing cameras and ALPR
 - FastTrac identifies 40-50% of traffic
 - Limited wider lanes for HD ideal for truck and bus monitoring
 - Could rotate RSD units between lanes
- Multiple annual measurements on vast majority of vehicles in the region
- Need only process high emitter plates


Conclusion

RSD high emitter identification programs can cost effectively increase Smog Check benefits.

SPARE SLIDES

Vehicle Specific Power (VSP)

$$VSP = \frac{Power}{Mass} = \frac{\frac{d}{dt}(E_{Kinetic} + E_{Potential}) + F_{Rolling} \cdot v + F_{Aerodynamic} \cdot v + F_{int \, ernal \, friction} \cdot v}{m} = \frac{e^{-\frac{t}{t}}}{m}$$

$$\approx v \cdot a \cdot (1 + \varepsilon_{i}) + g \cdot grade \cdot v + g \cdot C_{R} \cdot v + \frac{1}{2} \rho_{a} C_{D} \frac{A}{m} (v + v_{w})^{2} \cdot v + C_{if} \cdot v =$$

$$\approx 1.1 \cdot v \cdot a + 9.81 \cdot \text{grade} + 0.213 \cdot v + 0.000305 \cdot (v + v_w)^2 \cdot v$$

Previous Work:

Specific Power

 $= 2 \cdot \mathbf{v} \cdot \mathbf{a}$

(EPA, 1993)

• Positive Kinetic Energy = $\sum pos(SP_i)/\sum distance$

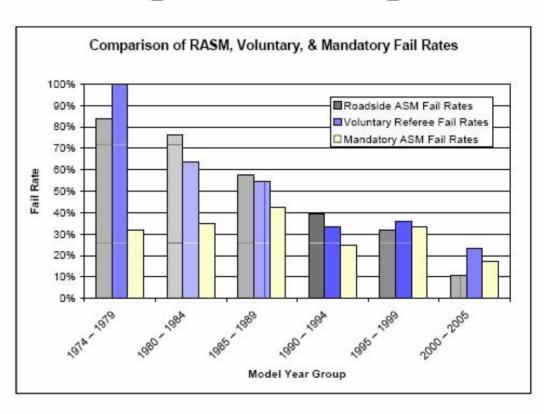
(Watson et al., 1983)

• DPWRSUM

 $= \Sigma |SP_i - SP_{i-1}|$

(Webster and Shih, 1996)

- Operating Mode / Vehicle Specific Power (VSP)
 - VSP = Engine Power Out / Vehicle Weight (kw/t)
 - Emissions more representative when engine is delivering moderate power
 - Example sedan full power (133hp, 2t) ~50 kw/t
 - FTP / IM240 maximum 23 kw/t
 - > ASM 2525 and 5015 5-7 kw/t
 - RSD typical distribution 0-30 kw/t, avg. 10-15 kw/t


Draft report uses ranges of 5-20 kw/t and 5-25 kw/t

- Operating Mode / Vehicle Specific Power (VSP)
 - Importance of VSP depends on application
 - Newer vehicles (~1991 and newer) better controlled over wider range of VSP – most vehicles
 - Application of VSP filter to Missouri results made no difference to clean screen effectiveness
 - Variation of emissions with power much less than difference between normal and gross emitters

Andrew Burnette, ERG 2006 CRC, Impact of VSP Filtering on RSD Prediction of Roadside ASM Failure:

Fail Rate Comparison Graph

RASM and Voluntary results agree with each other, but disagree with Mandatory results for older vehicles.

